#### 地質・地盤調査結果の取りまとめ状況について

平成20年4月9日 東京電力株式会社



### 新潟県中越沖地震の概要



#### 原子炉建屋基礎マット上で観測された加速度

単位:ガル (cm/s²), () 内は設計値

/////

| 号機        | 水平-      | 水平-      | 垂直                                    |  |
|-----------|----------|----------|---------------------------------------|--|
| <b>夕饭</b> | 南北方向     | 東西方向     | ————————————————————————————————————— |  |
| 1         | 311(274) | 680(273) | 408(235)                              |  |
| 2         | 304(167) | 606(167) | 282(235)                              |  |
| 3         | 308(192) | 384(193) | 311(235)                              |  |
| 4         | 310(193) | 492(194) | 337(235)                              |  |
| 5         | 277(249) | 442(254) | 205(235)                              |  |
| 6         | 271(263) | 322(263) | 488(235)                              |  |
| 7         | 267(263) | 356(263) | 355(235)                              |  |

静的水平地震力は470gal

スクラム(自動停止)設定値:

水平: 120 ガル 垂直: 100 ガル

発生日時: 平成19年7月16日 10時13分(祝日)

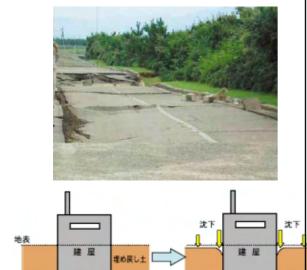
規模(マグニチュード): 6.8

震源の深さ: 17 km

· 発電所からの距離: 震央 16 km, 震源 23 km



東京電力


地震計

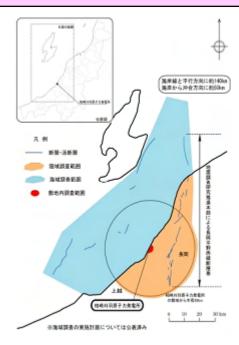
- 地質調査の目的
- 地盤の安定性の調査
  - > 広域および敷地周辺の調査
  - > 発電所付近・敷地内の調査
- 建屋レベルの調査
- 主な活断層の調査
  - > 海域調査
  - > 陸域調査
- 今後の予定



### 地質調査の目的

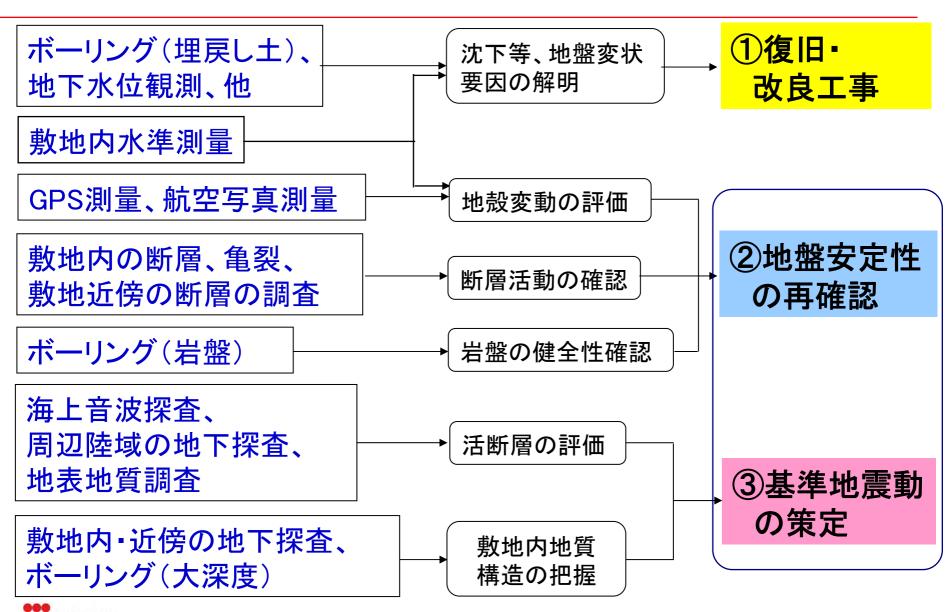
#### ①復旧•改良工事




埋戻し土の沈下の原因等 を調査し、復旧・改良工事 に反映する

#### ②地盤安定性の再確認




発電所構内の断層が動い たかどうかを調査し、地盤 の安定性を再確認する

#### ③基準地震動の策定



地震を起こす活断層を 調査し、基準地震動を 設定する

### 地質調査の内容



- 地質調査の目的
- 地盤の安定性の調査
  - > 広域および敷地周辺の調査
  - > 発電所付近・敷地内の調査
- 建屋レベルの調査
- 主な活断層の調査
  - > 海域調査
  - > 陸域調査
- 今後の予定



### 地盤の安定性の調査

広域および敷地周辺の地盤変動の調査

敷地周辺の地盤の動きと、発電所敷地の <sub>発電所</sub> 地盤の動きを比較し、違いがあるかを確認し、 敷地周辺での断層活動の有無を把握する



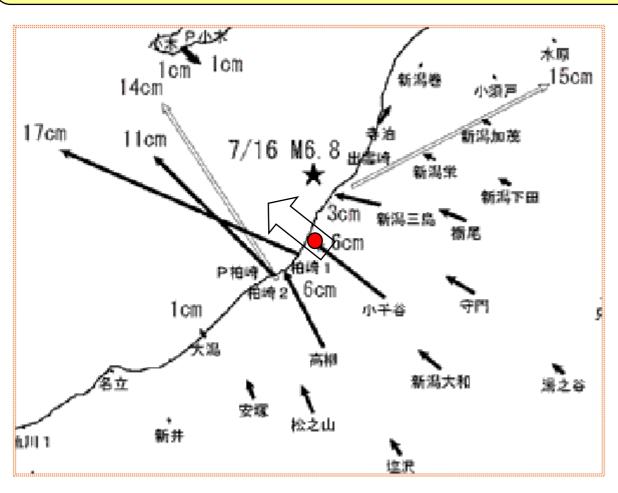
真殿坂断層や敷地内の活断層ではないと 評価している断層に動きがあるかどうかを 確認する





# 地盤の変動をとらえるための調査

各種調査により、今回の地震に伴う地盤の変動をとらえ、 発電所の安全性に問題となる変動の有無について検討




- 地質調査の目的
- 地盤の安定性の調査
  - > 広域および敷地周辺の調査
  - > 発電所付近・敷地内の調査
- 建屋レベルの調査
- 主な活断層の調査
  - > 海域調査
  - > 陸域調査
- 今後の予定



#### 地震による水平地盤変動の測定結果(国土地理院データ)

#### 敷地付近では10cm程度の北西側への移動が推定される



基準期間:

2007/07/10~2007/07/15

比較期間:

2007/07/17~2007/07/22

- 矢印の長さと向きで移動を表わす
- ・白抜き矢印は傾斜による変位を 補正
- ・「出雲崎」は、地盤の局所的な 変形による影響が含まれている 可能性あり

地殻変動ベクトル図 (国土地理院HPより)

#### 地震による水平地盤変動の測定結果(当社GPS測量)

#### 敷地付近では、北西側へ移動したと推定される

S=1/250, 000

柏崎刈羽原子力発電所敷地周辺地殼変動調査 中越地方 精密GPS測量

水平変動ベクトル図 固定点:970806 新潟巻 単位:cm

単位:cm

●固定点を新潟巻

●2004年12月~2007年12月の変動量

▶2004年中越地震の余効変動

▶3カ年分の日常的な変動

▶2007年中越沖地震に伴う地殻変動

を含む

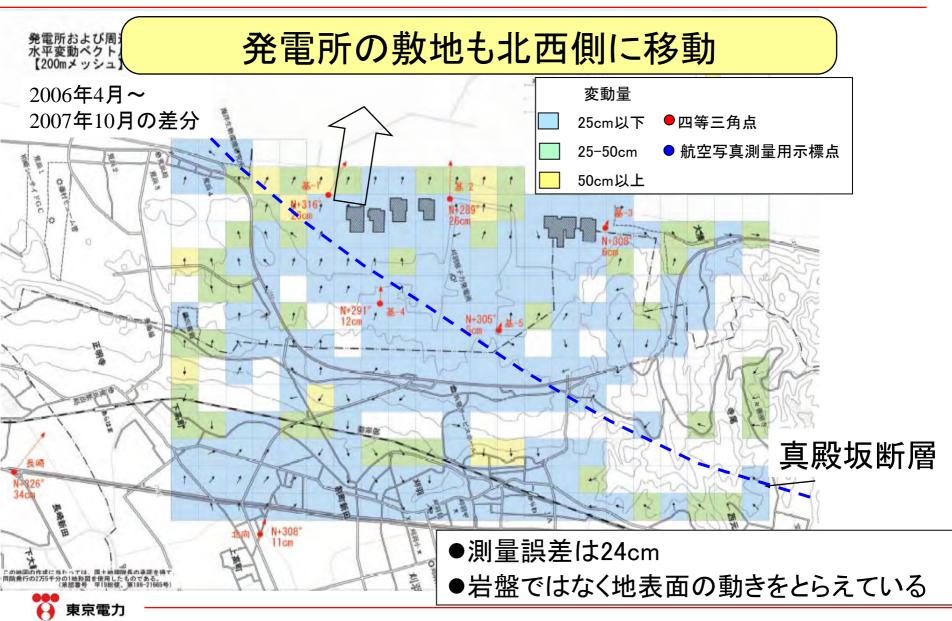
点 の 種 類 日 電子基準点
・ GPS基準点
・ 既設基準点・水準取付点
・ 既設基準点・水準取付点
・ 数要量:平成19年12月-平成16年12月





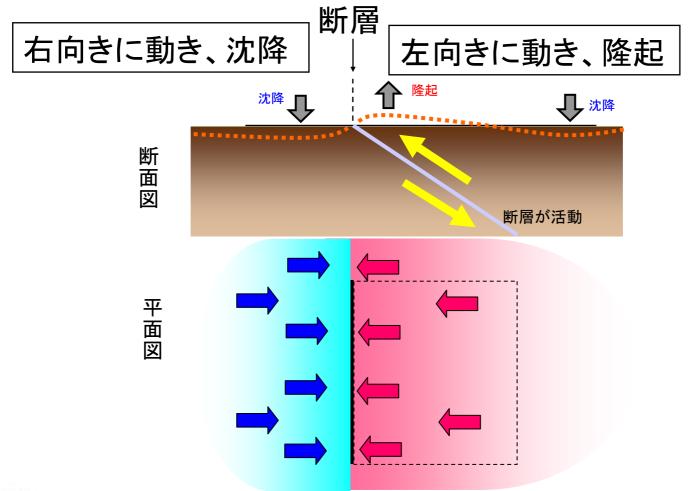
(本書)

\$600 (P+8)


P-0-02



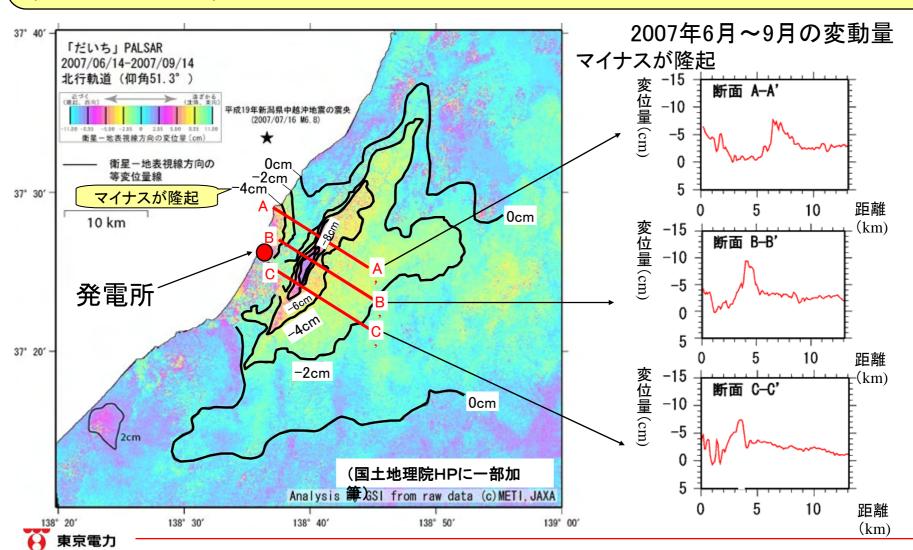



Manager of the states

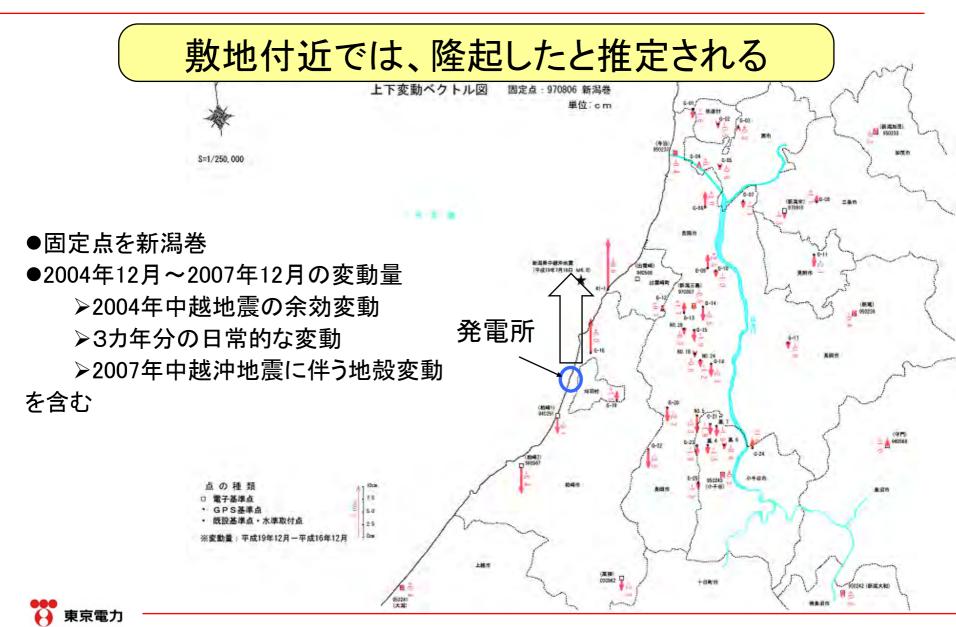
#### 地震による水平地盤変動の測定結果(当社航空写真測量)



# 断層が地表面付近で動く場合の一般的な「地盤の動き」


断層が移動した場合、断層を境に、 沈降や水平移動の違いが生じる



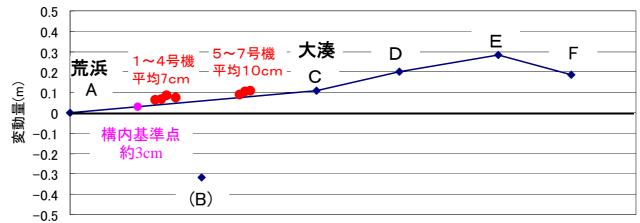



#### 地震による上下地盤変動の測定結果(国土地理院データ)

#### 敷地および敷地近傍では、地盤が隆起したと推定される



#### 地震による上下地盤変動の測定結果(当社GPS測量)




#### 当社の水準測量による建屋位置の測定結果



地震前後の標高としては、1~4号機側で平均約7cm、5~7号機側で平均約10cm 高くなっており、国土地理院による地震後の一等水準点の変動値と概ね整合

#### 地震前後の1等水準点成果の鉛直変動量



# まとめ(敷地周辺の地盤変動)

- 中越沖地震により、広い範囲で地盤変動が現れている
- ●発電所周辺の地盤は北西側へ移動し、隆起が推定
- ●発電所敷地の地盤も北西側へ移動し、隆起



発電所の敷地の隆起等の動きは、 周辺の地盤の動きと調和



敷地付近で地層のズレを伴うような 断層の動きはない



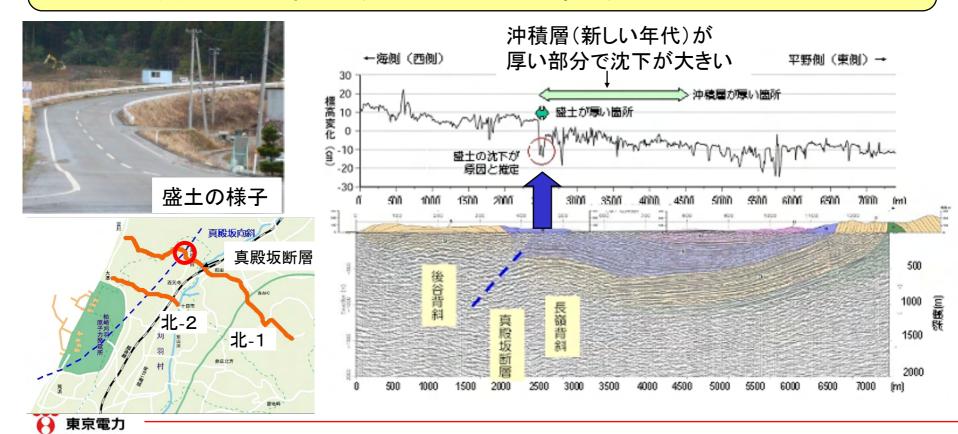

- 地質調査の目的
- 地盤の安定性の調査
  - > 広域および敷地周辺の調査
  - > 発電所付近・敷地内の調査
- 建屋レベルの調査
- 主な活断層の調査
  - > 海域調査
  - > 陸域調査
- 今後の予定



### 敷地北側の地盤変動調査

敷地北側にある真殿坂断層を横断する測線で、 水準測量を実施

- 地震前平成18年9月
- 地震後平成19年11月



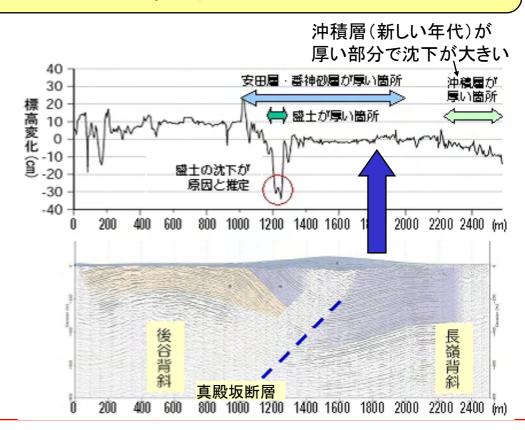





# 北-1測線の地盤変動調査結果

- 真殿坂断層が推定される付近でやや大きな変動
- 変動が大きな箇所付近は、盛土が厚い部分
- 変動の原因は盛土の沈下が想定される
- 道路周辺に断層活動による地形の変動はみられない




# 北-2測線の地盤変動調査結果

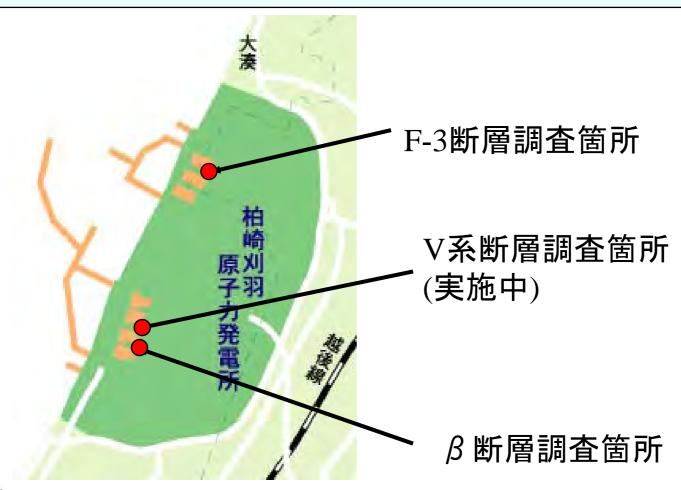
- 真殿坂断層の延長位置に変動はみられない
- 変動が大きな箇所は、盛土が厚い部分。変動の原因は盛土 の沈下の可能性が高い
- 道路周辺に断層活動による地形の変動はみられない



盛土の様子






# 敷地北側の地盤変動調査のまとめ

- ●真殿坂断層の延長位置に変動はみられない
- ●変動が大きな箇所は、盛土が厚い部分。 変動の原因は盛土の沈下の可能性が高い
- ●新しい年代の地層である沖積層が厚い部分で 沈下が大きい
- ●道路周辺に断層活動による地形の変動はみられない



# 敷地内の断層活動の調査

今回の地震により、発電所の敷地内にある断層が動いていないかどうかを確認する





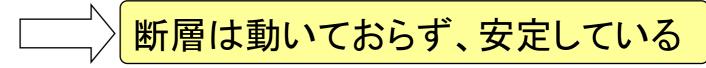
# F-3断層の調査結果

6号機タービン建屋 5号機タービン建屋

5号機

6号機 原子炉建屋

安田層と西山層の地層境界に変位 がないことから、F-3断層は動いて いないことを直接目視で確認




建屋設置レベルでの

F3断層の位置

# まとめ(発電所付近・敷地の地盤変動)

- ●敷地付近の真殿坂断層に今回の地震に伴う動きは なかったと考えられる
- 敷地内のβ断層、F-3断層は、今回の地震に伴う動きはなかったことを確認



●真殿坂断層、敷地内のV系断層については、追加調査を実施し、地盤安定性についてデータの拡充を図る

- 地質調査の目的
- 地盤の安定性の調査
  - > 広域および敷地周辺の調査
  - > 発電所付近・敷地内の調査
- 建屋レベルの調査
- 主な活断層の調査
  - > 海域調査
  - > 陸域調査
- 今後の予定

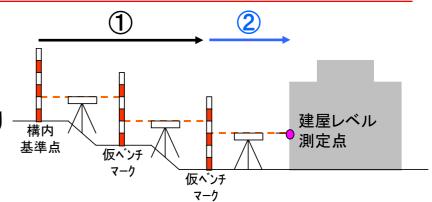


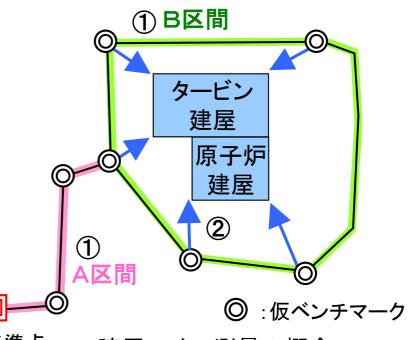
### 測定方法と誤差

#### ■建屋レベル測定の目的

- ①建屋を維持管理するため建屋竣工後から 継続的測定を実施(自主測定)
- ②建屋レベルを継続的に測定することにより 有害な不同沈下等がないことを確認

#### ■建屋レベルの測定方法


- ①構内基準点から仮ベンチマークの標高を測定
- ②最寄の仮ベンチマークから建屋レベルを測定


#### ■誤差

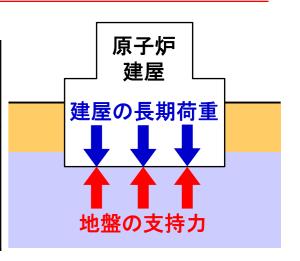
2級水準測量にて実施 許容誤差(mm)=5√S , S:測量距離(km)

測定誤差の例(1~4号機)

| 区間 | 距離<br>(km) | 誤差<br>(mm) | 許容誤差<br>(mm) |
|----|------------|------------|--------------|
| A  | 0.636      | -2.0       | ±3.9         |
| В  | 2.256      | -0.5       | ±7.5         |






構内基準点

建屋レベル測量の概念

# 建屋の支持地盤について

#### ■地盤の支持力

|             | 柏崎刈羽<br>原子力発電所<br>(西山層) | 関東の<br>超高層ビル*<br>(上総層群) |
|-------------|-------------------------|-------------------------|
| 地盤の長期支持力(A) | 約4500kN/m2              | 約1000kN/m2              |
| 建屋の長期荷重(B)  | 約600kN/m2               | 約500~1000kN/m2          |
| 裕度(A/B)     | 約7倍                     | 約1~2倍                   |



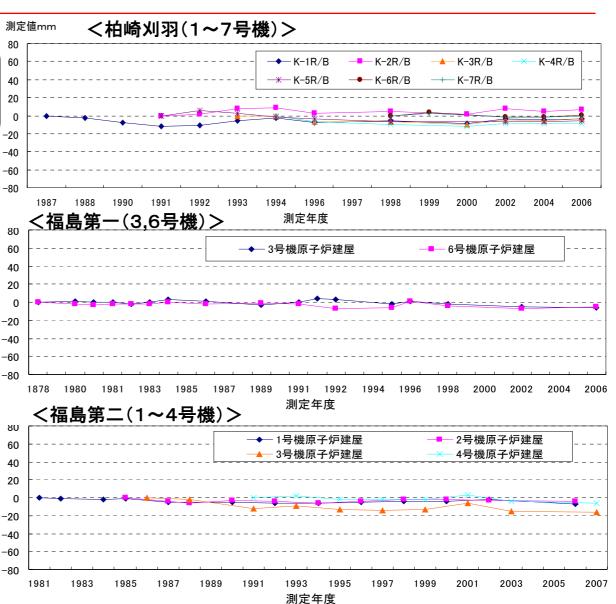
\*財団法人日本建築センタービルディングレター '07/1

#### ■建屋の建設による地盤の変化

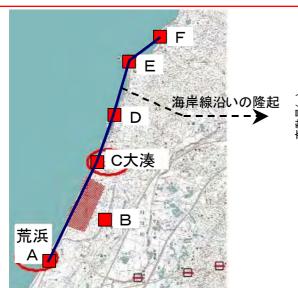


経過時間 ■■■■

①建設開始~竣工 建屋の荷重を受け、 地盤が徐々に沈下する

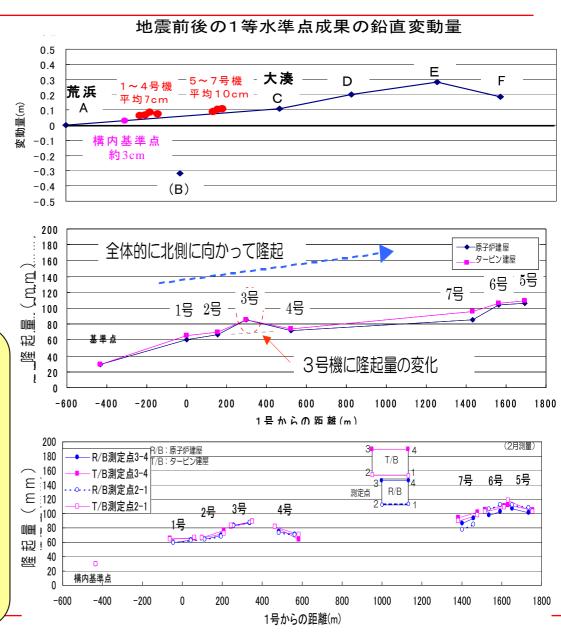

②竣工後 地盤の沈下がほぼ収束する



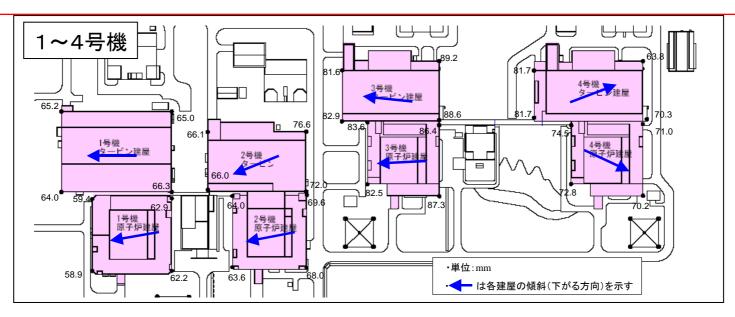

# 建屋レベルの経年変化(地震前)

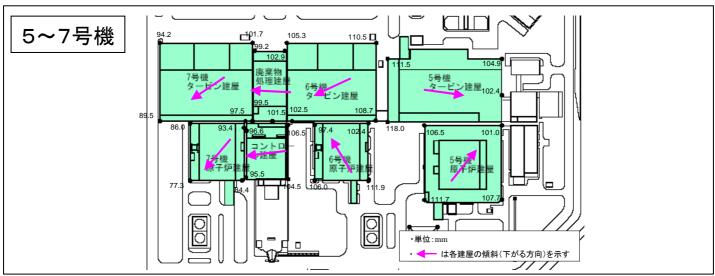
- ■建屋レベルの経年変化は小さく、その変動量は数mm程度
- ■福島第一、第二も同様の傾向






#### 建屋レベルの全体的な変動量(地震前後)





水準点位置図

- ■地震前後の標高としては、1~4号機側で平均約7cm、5~7号機側で平均約10cm高くなっている。
- ■国土地理院による地震後の一等水 準点の変動値と概ね整合
- ■建屋は地盤の隆起形状に従う方向 に傾斜
- ■隆起量の変化は地盤物性の差異などによると推定



# 各建屋の傾斜方向







### 建屋の傾斜量

- ■地震発生前後で建屋傾斜は増加しているものの、傾斜量 としては小さく、設備に影響を及ぼすものではない
- ■地震発生前の建屋傾斜は福島第一、第二とほぼ同様

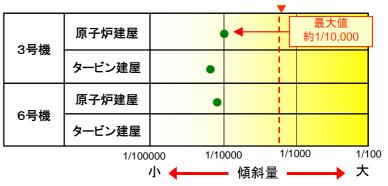
#### <柏崎刈羽(1~7号機)>

傾斜限界値の目安(日本建築学会)  $(1/1000 \sim 1/2000)$ 

|          |          |            | ,        | <b>y</b> |                |
|----------|----------|------------|----------|----------|----------------|
| 4 🗆 🖽    | 原子炉建屋    | <b>+</b> • |          |          |                |
| 1 号機<br> | タービン建屋   |            | •        |          |                |
| 0 5 44   | 原子炉建屋    | •          | •        |          |                |
| 2号機      | タービン建屋   |            | •        |          |                |
| O 17 +44 | 原子炉建屋    |            |          |          |                |
| 3号機      | タービン建屋   | •          |          |          |                |
| . = 100  | 原子炉建屋    | • •        |          |          |                |
| 4号機      | タービン建屋   | •          | •        |          |                |
|          | 原子炉建屋    | •          | •        |          |                |
| 5号機 6号機  | タービン建屋   |            | •        |          |                |
|          | 原子炉建屋    | •          | •        |          |                |
|          | タービン建屋   | • •        |          |          | <b></b>        |
|          | コントロール建屋 | •          | <b>+</b> |          | 大値<br>約1/2,000 |
|          | 廃棄物処理建屋  |            | •        | 1 1      | 約1/3,800       |
| 7号機      | 原子炉建屋    | •          | •        |          |                |
|          | タービン建屋   | •          | •        |          |                |
|          | 1/10     | 0000 1/1   | 0000     | 1/1000   | 1/10           |

● ①当初測定時~②地震前

◆ ①当初測定時~ ③地震後(現


①当初測定時:各号機の初回測定時

②地震前:2006年5月、③地震後:2008年2月

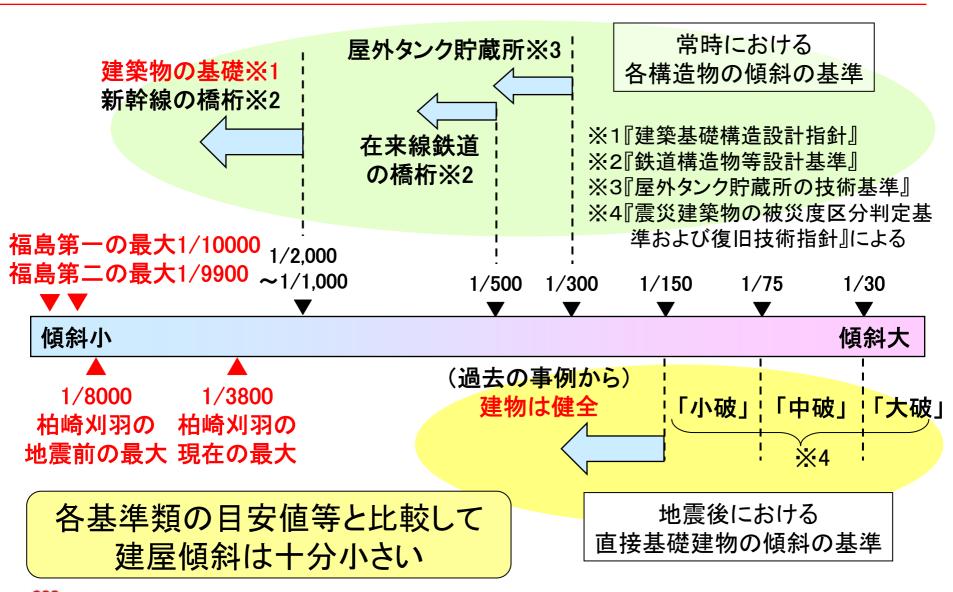
傾斜量 \_\_\_\_\_\_大

<福島第一(3,6号機)>

傾斜限界値の目安(日本建築学会)  $(1/1000 \sim 1/2000)$ 



#### <福島第二(1~4号機)>


傾斜限界値の目安(日本建築学会)  $(1/1000 \sim 1/2000)$ 





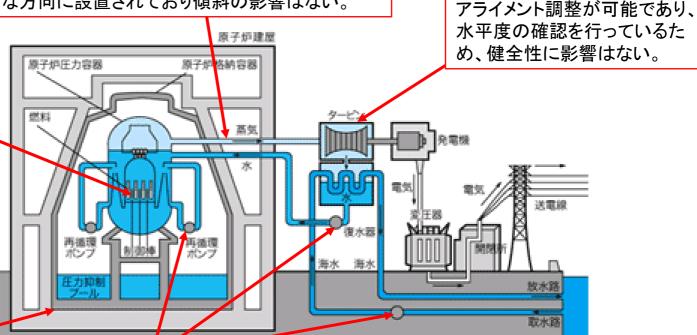
在)

# 建屋傾斜の建屋への影響



# 建屋傾斜の機器への影響

・配管および弁


従来から、弁・配管は様々な方向に設置されており傾斜の影響はない。

•制御棒挿入性

制御棒と燃料集合体は同一方向に傾斜するとともに、当該の傾斜量では燃料集合体の相対変位が生じないため、挿入性への影響はない。

•容器基礎

基礎部の荷重の変化は無視できるほど小 さい。



・ポンプ

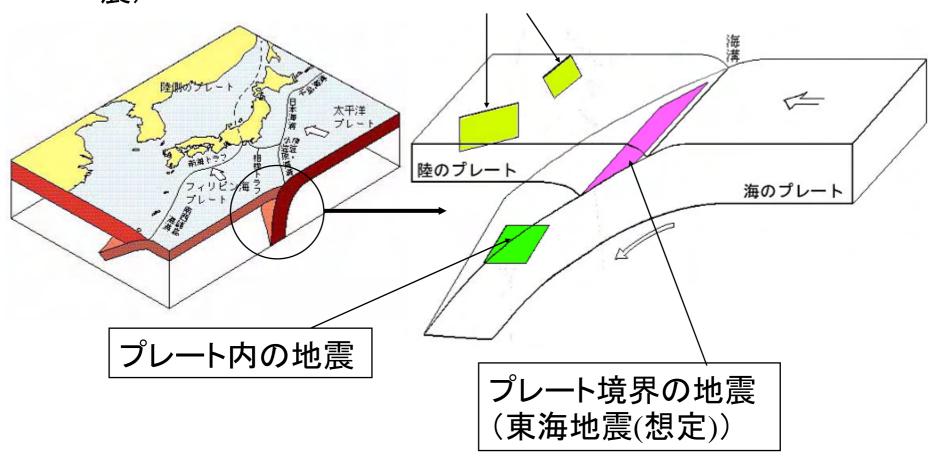
基礎部への影響は無視できるとともに、軸受荷重への影響も無視できる。

建屋傾斜の目安値(1/1000 ~ 1/2000:建築基礎構造設計指針)の範囲では、 荷重の変化等は0.1%程度あり、機器・配管系の健全性は確保できる

タービン(長尺機器)

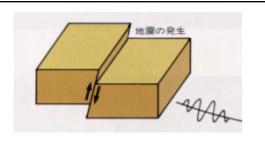
### まとめ(建屋レベルの調査)

- ●建屋レベルの変動は小さい 建屋レベルはほぼ一定で、その変動は数mm程度と小さい
- ●建屋は地震後の地盤の隆起形状に従う方向に傾斜 隆起量の変化は地盤物性の差異などによると推定。 念のため、掘削して断層を直接確認する予定
- ●各基準類の目安値等と比較して建屋傾斜は十分小さい 最大傾斜量 柏崎 1/3800(6/7号C/B) (福島 1/9900(福島第二1号T/B))
- ●建屋・機器の健全性は確保される 各基準類の目安値と比較して建屋傾斜は小さい 建屋傾斜の目安値の範囲では、機器の健全性は確保される




- 地質調査の目的
- 地盤の安定性の調査
  - > 広域および敷地周辺の調査
  - > 発電所付近・敷地内の調査
- 建屋レベルの調査
- 主な活断層の調査
  - > 海域調査
  - > 陸域調査
- 今後の予定




### 日本で発生する地震の種類

浅い地震【直下型地震】(兵庫県南部地震、新潟県中越地 震)





# なぜ活断層を調査するのか?



断層のずれ = 地震



地震を起こす可能性のある断層は繰り返し活動する



活断層



新指針では約13万年前以降に活動した断層を活断層 としている(旧指針は5万年前)

### 活断層の調査の目的

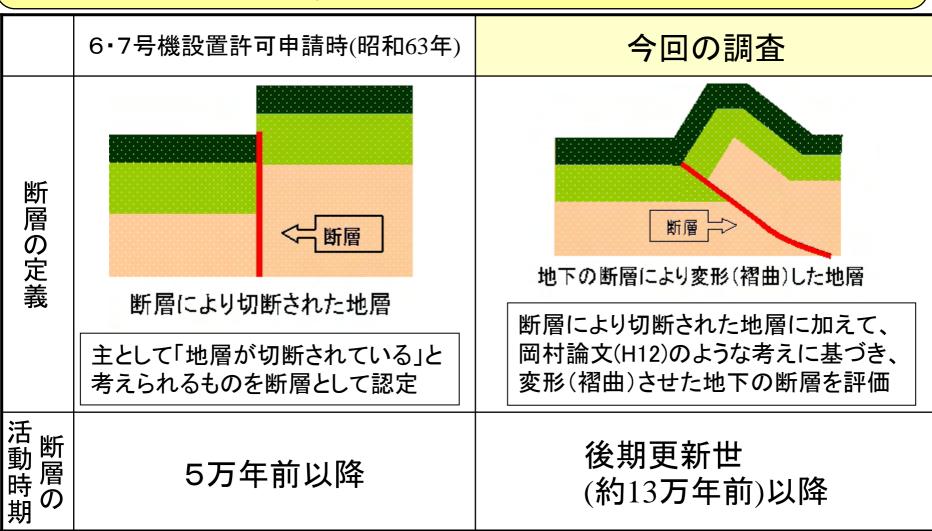
#### 発電所の耐震安全性を確保



発電所での地震による揺れを検討 (基準地震動の策定)

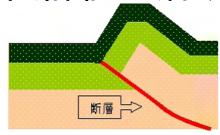


発電所周辺でどのような地震が 起こるかを調査



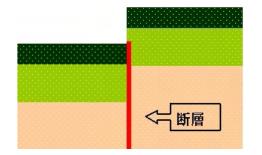

地震を起こす活断層の位置、長さなどを調査




#### 活断層認定の拡大

#### 今回の評価は新耐震指針に基づき安全側に活断層を評価



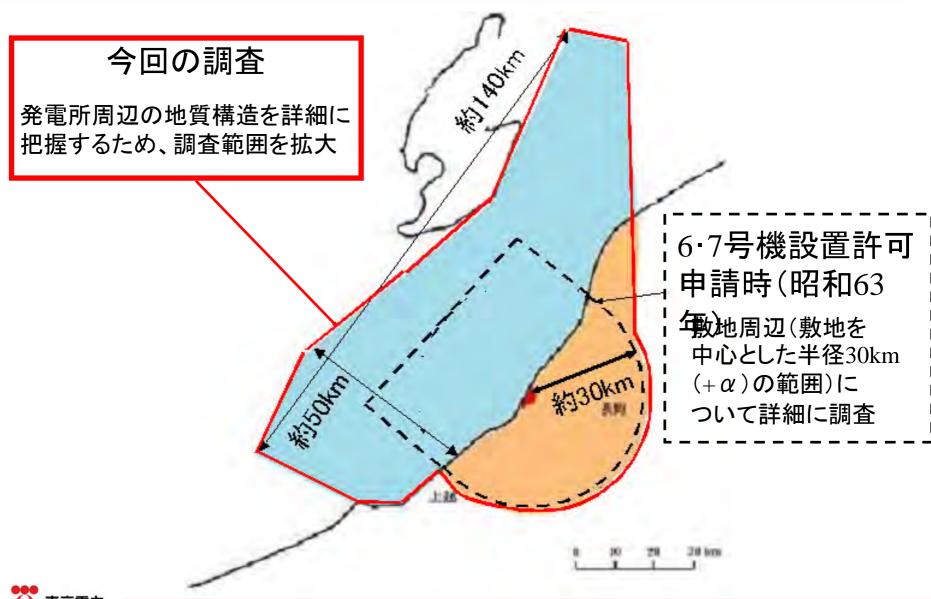

#### 活断層の長さの評価例

#### 今回評価の活断層



- 地層が切れてはいないが、 曲がっている
- 活動時期が約13万年前以降

6·7号機設置許可 申請時の活断層




- ●地層が切れている
- ●活動時期が5万年前以降

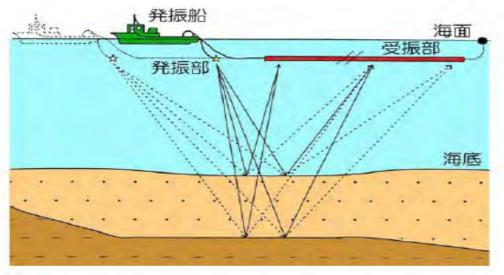
活断層の認定範囲を拡大したことにより、活断層は長く評価される傾向

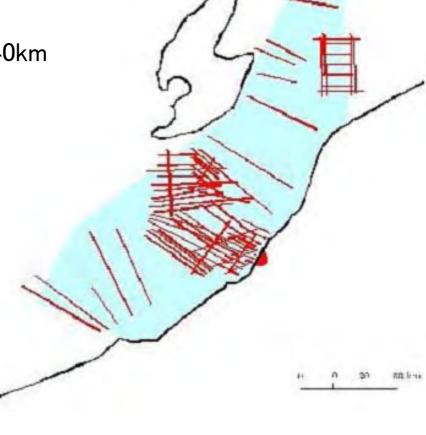


#### 調査範囲の拡大

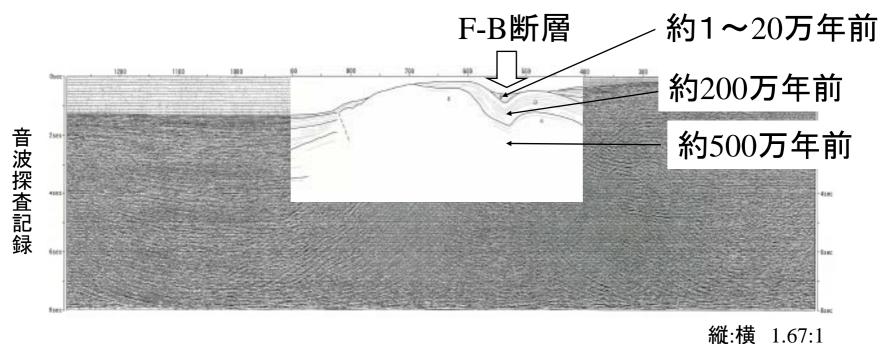


- 地質調査の目的
- 地盤の安定性の調査
  - > 広域および敷地周辺の調査
  - > 発電所付近・敷地内の調査
- 建屋位置の調査
- 主な活断層の調査
  - > 海域調査
  - > 陸域調査
- 今後の予定





# 海域の調査方法と調査範囲

#### 海上音波探査により、海域の地下構造を評価




測線数:80本 総延長:約1,340km





### F-B断層の調査結果



地層は切断されていないが、地下構造の特徴から 断層を想定。約13万年前以降の地層も変形 →F-B断層 8km→30km(活断層)



# 主な活断層の調査結果

最新の知見(断層認定の拡大、活動年代の延 長)

| を踏まえて評                    |    | 機設置<br>申請時 | 今回の評価 |     |  |
|---------------------------|----|------------|-------|-----|--|
|                           | 長さ | 活断層        | 長さ    | 活断層 |  |
| 佐渡島棚東縁<br>部南断層<br>(F-A断層) | 5  | ×          | 37    | 0   |  |
| F-B断層                     | 8  | ×          | 30    | 0   |  |
| F-D断層                     | 10 | ×          | 25    | 0   |  |
| 高田沖断層                     | 29 | 0          | 23    | 0   |  |


長さはkm

一 今回の評価

─ 6、7号機設置許可申請時の活断層想定

- - ・ 6,7号機設置許可申請時に活動性を 認めていなかった断層想定





- 地質調査の目的
- 地盤の安定性の調査
  - > 広域および敷地周辺の調査
  - > 発電所付近・敷地内の調査
- 建屋位置の調査
- 主な活断層の調査
  - > 海域調査
  - > 陸域調査
- 今後の予定

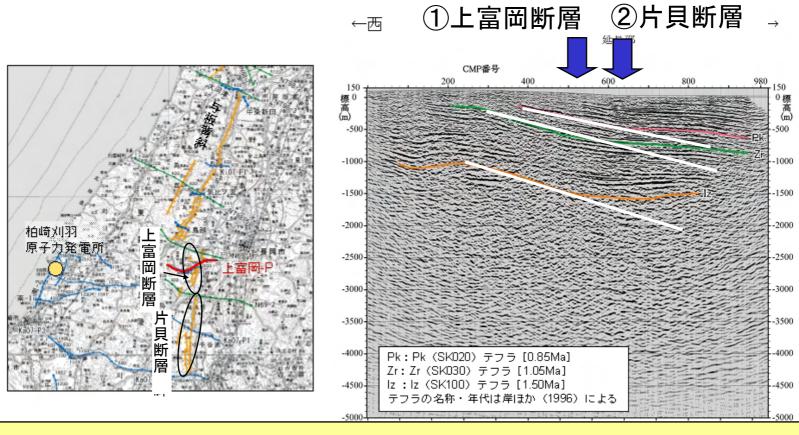


# 陸域の調査方法と調査範囲

#### 起震車を用いた地下探査により、陸域の地下構造を調査



測線数:14本


観測車

総延長:約115km





### 片貝断層の調査結果



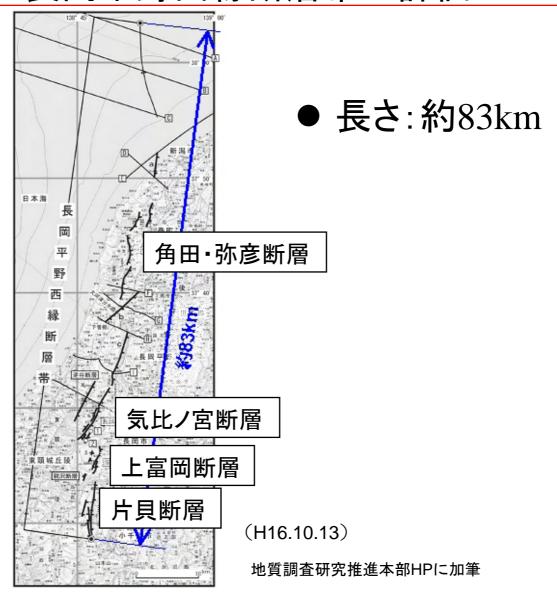
- 1上富岡断層の位置に、断層は認められない
- ②その東側には片貝断層の断層の延長とみられる 変動が認められる → 片貝断層 10km→16km

#### 主な活断層の調査結果

最新の知見(断層認定の拡大、活動年代の延長) を踏まえて評価

|         |      | 7号機設置<br>可申請時 | 今回             | 回の評価 |  |
|---------|------|---------------|----------------|------|--|
|         | 長さ   | 活断層           | 長さ             | 活断層  |  |
| 角田•弥彦断層 |      | 調査対象外         | 54 O           |      |  |
| 気比ノ宮断層  | 17.5 | 0             | 22             | 0    |  |
| 上富岡断層   | 2    | 0             | 片貝断層の<br>評価に包含 |      |  |
| 片貝断層    | 10   | 0             | 16             | 0    |  |

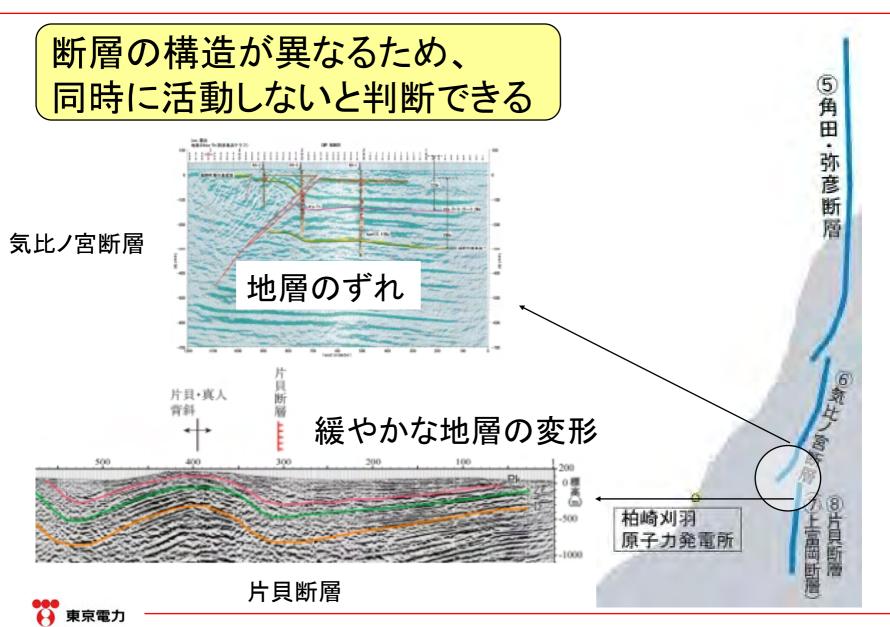
長さはkm


| 一 今回の評価

6、7号機設置許可申請時の活断層想定 (角田・弥彦断層については、連動性が無いことのみ評価)

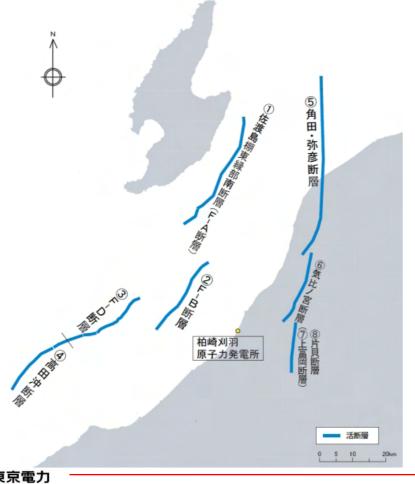





# 地震調査研究推進本部による長岡平野西縁断層帯の評価



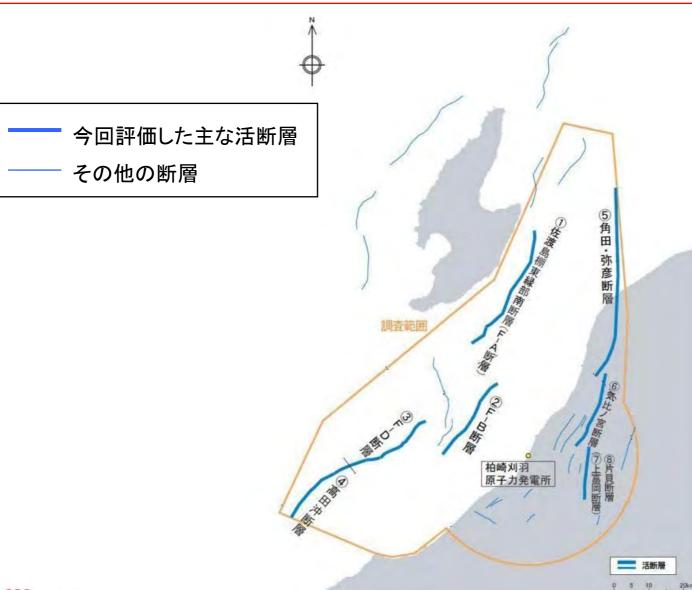
# 活断層の同時活動性評価 1/2


約1万年前の地層の活動の大きさに違 5 角田·弥彦 いがあるため、同時に活動しないと判断 できる 角田•弥彦断層 活動小 (緩やかな 傾き) 気比ノ宮断層 活動大 プ上富岡町 8片貝斯層 (地層の切 柏崎刈羽 原子力発電所 断)

# 活断層の同時活動性評価 2/2



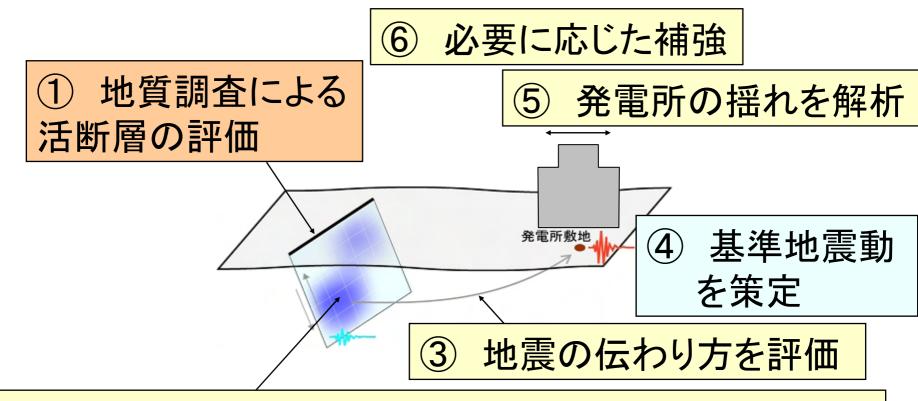
# まとめ


最新の知見(活動年代の延長、断層認定の拡大)を踏まえて、 広域調査を行った結果、主な活断層を以下の様に評価した



|                       | 長さ |
|-----------------------|----|
| 佐渡島棚東縁部南断層<br>(F-A断層) | 37 |
| F-B断層                 | 30 |
| F-D断層                 | 25 |
| 高田沖断層                 | 23 |
| 角田•弥彦断層               | 54 |
| 気比ノ宮断層                | 22 |
| 片貝断層                  | 16 |

長さはkm


# その他の断層について



- 地質調査の目的
- 地盤の安定性の調査
  - > 広域および敷地周辺の調査
  - > 発電所付近・敷地内の調査
- 建屋位置の調査
- 主な活断層の調査
  - > 海域調査
  - > 陸域調査
- 今後の予定



# 発電所の耐震安全性の確保に向けて

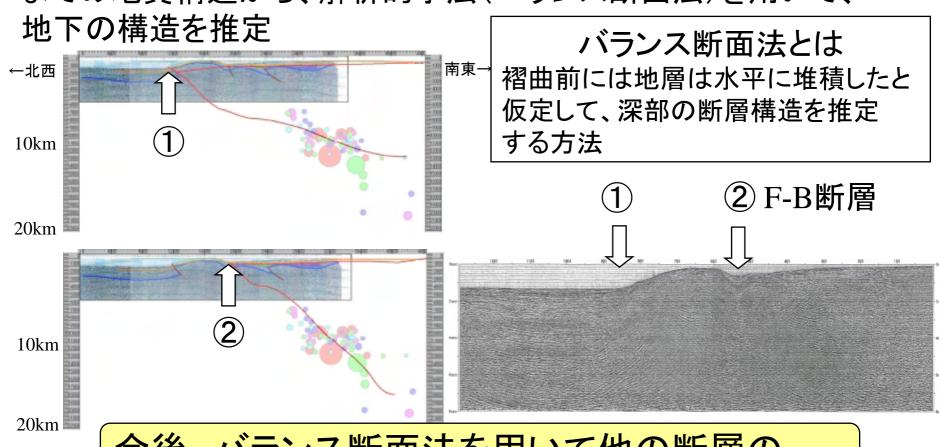



② 断層モデルの設定とコンピュータによる揺れの計算 (震源の揺れを細かく計算)



### 断層モデルの設定における活断層の評価 1/2

基準地震動の策定では保守的に評価し、近接する 活断層の同時活動を考慮する




|                           | 長さ | 同時活動を<br>考慮 |
|---------------------------|----|-------------|
| 佐渡島棚東縁<br>部南断層<br>(F-A断層) | 37 | なし          |
| F-B断層                     | 30 | なし          |
| F-D断層                     | 25 | 長さ          |
| 高田沖断層                     | 23 | 約48km       |
| 角田•弥彦断層                   | 54 | 1           |
| 気比ノ宮断層                    | 22 | 長さ<br>約90km |
| 片貝断層                      | 16 | η J / OKIII |

長さはkm

#### 断層モデルの設定における活断層の評価

地下探査および海上音波探査により得られた深度2~3km程度までの地質構造から、解析的手法(バランス断面法)を用いて、

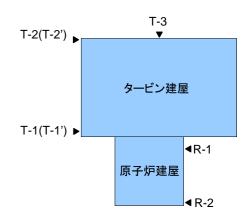


今後、バランス断面法を用いて他の断層の地下構造や、断層の連続性などの推定に活用

# まとめ

- 発電所の建物・設備の健全性評価を、引き 続き実施してまいります
- 国の委員会などに評価をいただきながら、基準 地震動の策定などの発電所の耐震安全性の 確保に向けた取り組みを実施してまいります
- 取り組みの進捗にあわせて、地域の皆さまへ お知らせしてまいります

# 参考資料



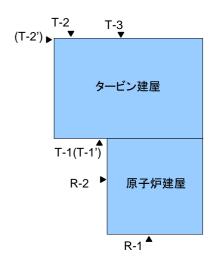

#### 【参考】福島第一・第二の建屋レベルと傾斜(1)

#### 【福島第一原子力発電所】

3号機

|    |      | J     | 原子炉建原 | <b></b>      |       |       | タービ   | ン建屋   |       |         |
|----|------|-------|-------|--------------|-------|-------|-------|-------|-------|---------|
| 測定 | 時期   | 測定点   | の標高   | 最大傾斜         |       | 測     | 定点の標  | 高     |       | 最大傾斜    |
|    |      | R−1   | R-2   | 月又ノヘ   9只 小丁 | T-1   | T-2   | T-3   | T-1'  | T-2'  | 以入门员小工  |
| 当初 | 1978 | 10506 | 10510 | _            | 10514 | 10492 | 10750 |       |       | _       |
| 2  | 1980 | 10507 | 10511 | 0            | 10516 | 10494 | 10751 |       |       | 1/50000 |
| 3  | 1980 | 10507 | 10510 | 1/32000      | 10515 | 10493 | 10752 |       |       | 1/50000 |
| 4  | 1981 | 10508 | 10509 | 1/10000      | 10517 | 10493 | 10753 |       |       | 1/25000 |
| 5  | 1982 | 10506 | 10507 | 1/10000      | 10515 | 10492 | 10752 |       |       | 1/25000 |
| 6  | 1983 | 10508 | 10507 | 1/6400       | 10516 | 10493 | 10750 |       |       | 1/39000 |
| 7  | 1984 | 10511 | 10511 | 1/8000       | 10518 | 10496 | 10753 |       |       | 1/50000 |
| 8  | 1986 | 10510 | 10508 | 1/5300       | 10515 | 10494 | 10753 |       |       | 1/39000 |
| 9  | 1989 | 10505 | 10505 | 1/8000       | 10512 | 10494 | 10751 |       |       | 1/15000 |
| 10 | 1991 | 10506 | 10509 | 1/32000      | 10512 | 10490 | 10745 |       |       | 1/16000 |
| 11 | 1991 | 10510 | 10515 | 1/32000      | 10515 | 10493 | 10751 |       |       | 0       |
| 12 | 1992 | 10511 | 10512 | 1/10000      | 10512 | 10496 | 10753 |       |       | 1/10000 |
| 13 | 1995 | 10504 | 10507 | 1/32000      | 10509 | 10483 | 10739 | 1     | /     | 1/13000 |
| 14 | 1996 | 10508 | 10510 | 1/16000      | 10514 | 10491 | 10748 | 1     | /     | 1/39000 |
| 15 | 1998 | 10505 | 10506 | 1/10000      | 10513 | 10493 | 10748 | /     | Y     | 1/16000 |
| 16 | 2002 | 10502 | 10503 | 1/10000      |       |       | 10745 | 11089 | 11187 | _       |
| 17 | 2006 | 10502 | 10503 | 1/10000      |       |       | 10744 | 11091 | 11188 | _       |




(標高の単位:mm)

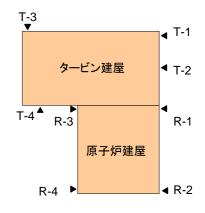
(標高の単位:mm)

|        |   | _    |
|--------|---|------|
| $\sim$ | _ | 14/4 |
| 1.     | _ | TXIX |
| n      |   | A-13 |
|        | _ | 4 50 |
|        |   |      |

|    |      | J     | 原子炉建原 | <b></b> |       |       | タービ   | ン建屋   |       |         |
|----|------|-------|-------|---------|-------|-------|-------|-------|-------|---------|
| 測定 | 時期   | 測定点   | の標高   | 最大傾斜    |       | 測     | 定点の標  | 高     |       | 最大傾斜    |
|    |      | R−1   | R-2   | 取入順新    | T-1   | T-2   | T-3   | T−1'  | T-2'  | 取入识析    |
| 当初 | 1978 | 13473 | 13475 | _       | 13479 | 13369 | 13470 |       | /     | _       |
| 2  | 1980 | 13468 | 13476 | 1/8200  | 13483 | 13374 | 13476 |       | /     | 1/35000 |
| 3  | 1980 | 13466 | 13476 | 1/6200  | /     | 13377 | 13478 |       |       | 0       |
| 4  | 1981 | 13470 | 13474 | 1/24000 |       | 13375 | 13477 |       |       | 1/43000 |
| 5  | 1982 | 13468 | 13476 | 1/8200  |       | 13377 | 13479 | /     |       | 1/43000 |
| 6  | 1983 | 13469 | 13474 | 1/16000 |       | 13378 | 13478 | 13477 |       | 1/43000 |
| 7  | 1984 | 13471 | 13476 | 1/16000 |       | 13379 | 13478 | 13480 |       | 1/21000 |
| 8  | 1986 | 13470 | 13475 | 1/16000 |       | 13376 | 13475 | 13479 | /     | 1/21000 |
| 9  | 1989 | 13470 | 13476 | 1/12000 |       | 13374 | 13475 | 13480 |       | 0       |
| 10 | 1991 | 13466 | 13479 | 1/4500  |       | /     | 13473 | 13478 | 13348 | _       |
| 11 | 1992 | 13462 | 13472 | 1/6200  |       |       | 13462 | 13475 | 13337 | _       |
| 12 | 1995 | 13459 | 13477 | 1/3100  |       |       | 13469 | 13480 | 13352 | _       |
| 13 | 1996 | 13473 | 13478 | 1/16000 |       |       | 13476 | 13480 | 13355 | _       |
| 14 | 1998 | 13466 | 13475 | 1/7100  |       |       | 13474 | 13477 | 13352 | _       |
| 15 | 2002 | 13463 | 13471 | 1/8200  | /     | 7     | 13470 | 13473 | 13349 | _       |
| 16 | 2006 | 13466 | 13472 | 1/12000 |       | /     | 13469 | 13473 | 13349 | _       |

注:1) 発電所基準点の標高を一定として測定しているため発電所構内の相対値




<sup>2)</sup> ポイント「T-1·T-2」は、測定点の欠損等により「T-1'·T-2'」に変更

#### 【参考】福島第一・第二の建屋レベルと傾斜(2)

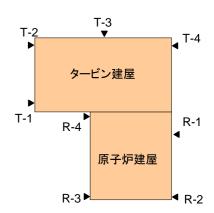
#### 【福島第二原子力発電所】

1号機

|    |      |        |        |        |        |         |        |        |        | 「一下一口・ノ | <b>単位:mm</b> ) |
|----|------|--------|--------|--------|--------|---------|--------|--------|--------|---------|----------------|
|    |      |        | J      | 京子炉建厚  | 륟      |         | タービン建屋 |        |        |         |                |
| 測定 | 時期   |        | 測定点(   | の標高    |        | 最大傾斜    | 測定点の標高 |        |        |         | 最大傾斜           |
|    |      | R−1    | R-2    | R-3    | R-4    | 取八帜州    | T-1    | T-2    | T-3    | T-4     | 取八帜矿           |
| 当初 | 1981 | 12,968 | 12,977 | 12,951 | 12,950 | _       | 12,959 | 12,960 | 12,939 | 12,951  | _              |
| 2  | 1982 | 12,968 | 12,975 | 12,951 | 12,946 | 1/18000 | 12,956 | 12,958 | 12,936 | 12,952  | 1/22000        |
| 3  | 1984 | 12,972 | 12,974 | 12,949 | 12,944 | 1/10000 | 12,960 | 12,964 | 12,933 | 12,946  | 1/10000        |
| 4  | 1985 | 12,969 | 12,976 | 12,952 | 12,947 | 1/18000 | 12,959 | 12,961 | 12,936 | 12,950  | 1/31000        |
| 5  | 1987 | 12,965 | 12,971 | 12,947 | 12,943 | 1/23000 | 12,956 | 12,958 | 12,930 | 12,943  | 1/16000        |
| 6  | 1990 | 12,967 | 12,972 | 12,945 | 12,942 | 1/14000 | 12,957 | 12,958 | 12,926 | 12,943  | 1/13000        |
| 7  | 1992 | 12,964 | 12,969 | 12,948 | 12,942 | 1/14000 | 12,955 | 12,956 | 12,926 | 12,947  | 1/9900         |
| 8  | 1994 | 12,966 | 12,970 | 12,945 | 12,941 | 1/14000 | 12,959 | 12,957 | 12,930 | 12,942  | 1/10000        |
| 9  | 1996 | 12,966 | 12,970 | 12,947 | 12,942 | 1/14000 | 12,955 | 12,957 | 12,929 | 12,945  | 1/21000        |
| 10 | 1998 | 12,974 | 12,971 | 12,945 | 12,942 | 1/5900  | 12,963 | 12,965 | 12,929 | 12,945  | 1/9200         |
| 11 | 2000 | 12,974 | 12,971 | 12,944 | 12,942 | 1/5800  | 12,963 | 12,965 | 12,929 | 12,945  | 1/9200         |
| 12 | 2002 | 12,971 | 12,974 | 12,948 | 12,946 | 1/11000 | 12,961 | 12,963 | 12,928 | 12,948  | 1/10000        |
| 13 | 2006 | 12,964 | 12,967 | 12,948 | 12,941 | 1/11000 | 12,954 | 12,954 | 12,926 | 12,947  | 1/9900         |



注:発電所基準点の標高を一定として測定しているため発電所構内の相対値


(標高の単位:mm)

(煙草の単位:mm)

#### 2号機

|    |      |        |        |        |         |         |        |        |        | (12)(11) |         |  |
|----|------|--------|--------|--------|---------|---------|--------|--------|--------|----------|---------|--|
|    |      |        | J      | 原子炉建厂  | <b></b> |         | タービン建屋 |        |        |          |         |  |
| 測定 | 時期   |        | 測定点    | の標高    |         | 最大傾斜    | 測定点の標高 |        |        |          | 最大傾斜    |  |
|    |      | R−1    | R-2    | R-3    | R-4     | 取入倾动    | T−1    | T-2    | T-3    | T-4      | 取入倾州    |  |
| 当初 | 1985 | 12,380 | 12,373 | 12,390 |         | _       | 12,395 | 12,394 | 12,384 | 12,383   | _       |  |
| 2  | 1987 | 12,373 | 12,369 | 12,387 |         | 1/17000 | 12,392 | 12,389 | 12,376 | 12,376   | 1/17000 |  |
| 3  | 1988 | 12,372 | 12,368 | 12,384 |         | 1/17000 | 12,390 | 12,388 | 12,374 | 12,373   | 1/14000 |  |
| 4  | 1990 | 12,373 | 12,370 | 12,388 | 12,381  | 1/13000 | 12,392 | 12,392 | 12,374 | 12,372   | 1/7100  |  |
| 5  | 1992 | 12,371 | 12,368 | 12,387 | 12,379  | 1/13000 | 12,390 | 12,391 | 12,373 | 12,372   | 1/7100  |  |
| 6  | 1994 | 12,369 | 12,368 | 12,387 | 12,377  | 1/8700  | 12,389 | 12,388 | 12,372 | 12,374   | 1/9500  |  |
| 7  | 1996 | 12,371 | 12,369 | 12,388 | 12,381  | 1/10000 | 12,390 | 12,389 | 12,374 | 12,374   | 1/11000 |  |
| 8  | 1998 | 12,374 | 12,370 | 12,388 | 12,382  | 1/17000 | 12,392 | 12,390 | 12,375 | 12,374   | 1/11000 |  |
| 9  | 2000 | 12,374 | 12,370 | 12,389 | 12,382  | 1/17000 | 12,393 | 12,391 | 12,374 | 12,374   | 1/8100  |  |
| 10 | 2002 | 12,372 | 12,369 | 12,390 | 12,381  | 1/11000 | 12,393 | 12,391 | 12,374 | 12,375   | 1/8100  |  |
| 11 | 2006 | 12,372 | 12,369 | 12,385 | 12,380  | 1/13000 | 12,388 | 12,386 | 12,372 | 12,370   | 1/14000 |  |

注:発電所基準点の標高を一定として測定しているため発電所構内の相対値



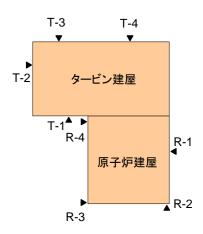
#### 【参考】福島第一・第二の建屋レベルと傾斜(3)

#### 【福島第二原子力発電所】

(標高の単位:mm)

(煙高の単位·mm)

#### 3号機


|    |      |        | Į.     | 原子炉建厚  | Ē      |         |        | 5      | マービン建り | 屋      |          |
|----|------|--------|--------|--------|--------|---------|--------|--------|--------|--------|----------|
| 測定 | 時期   |        | 測定点    | の標高    |        | 最大傾斜    | 測定点の標高 |        |        |        | 最大傾斜     |
|    |      | R-1    | R-2    | R-3    | R-4    | 取八帜和    | T-1    | T-2    | T-3    | T-4    | 取入顺州     |
| 当初 | 1986 | 12,368 | 12,351 | 12,365 | 12,351 | -       | 12,355 | 12,357 | 12,358 |        | _        |
| 2  | 1988 | 12,367 | 12,347 | 12,364 | 12,347 | 1/25000 | 12,351 | 12,355 | 12,355 |        | 1/31000  |
| 3  | 1991 | 12,356 | 12,338 | 12,358 | 12,335 | 1/8400  | 12,343 | 12,346 | 12,346 | 12,340 | 1/63000  |
| 4  | 1993 | 12,359 | 12,341 | 12,358 | 12,339 | 1/15000 | 12,343 | 12,346 | 12,346 | 12,342 | 1/63000  |
| 5  | 1995 | 12,354 | 12,337 | 12,355 | 12,336 | 1/15000 | 12,338 | 12,342 | 12,341 | 12,339 | 1/31000  |
| 6  | 1997 | 12,354 | 12,335 | 12,355 | 12,335 | 1/12000 | 12,337 | 12,341 | 12,341 | 12,339 | 1/31000  |
| 7  | 1999 | 12,354 | 12,337 | 12,353 | 12,336 | 1/6300  | 12,338 | 12,343 | 12,341 | 12,339 | 1/21000  |
| 8  | 2001 | 12,362 | 12,344 | 12,361 | 12,343 | 1/19000 | 12,350 | 12,350 | 12,349 | 12,344 | 1/26000  |
| 9  | 2003 | 12,354 | 12,335 | 12,352 | 12,331 | 1/10000 | 12,338 | 12,342 | 12,339 | 12,338 | 1/31000  |
| 10 | 2007 | 12,353 | 12,333 | 12,351 | 12,332 | 1/15000 | 12,337 | 12,339 | 12,339 | 12,336 | 1/100000 |

注:発電所基準点の標高を一定として測定しているため発電所構内の相対値

#### 4号機

|      |      |        |        |        |        |         |        |        |        | (.lw.lb1 | V) 丰 四 . IIIIII , |
|------|------|--------|--------|--------|--------|---------|--------|--------|--------|----------|-------------------|
|      |      |        | Ţ,     | 原子炉建屋  |        | タービン建屋  |        |        |        |          |                   |
| 測定時期 |      |        | 測定点    | の標高    |        | 最大傾斜    |        | 測定点    | の標高    |          | 最大傾斜              |
|      |      | R−1    | R-2    | R-3    | R-4    | 取入侧部    | T-1    | T-2    | T-3    | T-4      | 取入限新              |
| 当初   | 1991 | 12,944 | 12,957 | 12,966 | 12,941 | _       | 12,945 | 12,944 | 12,942 | 12,943   | _                 |
| 2    | 1993 | 12,945 | 12,964 | 12,967 | 12,941 | 1/7600  | 12,945 | 12,944 | 12,941 | 12,941   | 1/32000           |
| 3    | 1995 | 12,940 | 12,955 | 12,964 | 12,939 | 1/22000 | 12,943 | 12,940 | 12,937 | 12,938   | 1/22000           |
| 4    | 1997 | 12,944 | 12,955 | 12,964 | 12,939 | 1/22000 | 12,943 | 12,940 | 12,939 | 12,938   | 1/24000           |
| 5    | 1999 | 12,942 | 12,954 | 12,962 | 12,940 | 1/24000 | 12,943 | 12,940 | 12,939 | 12,938   | 1/24000           |
| 6    | 2001 | 12,946 | 12,958 | 12,970 | 12,944 | 1/27000 | 12,947 | 12,946 | 12,942 | 12,943   | 1/16000           |
| 7    | 2003 | 12,939 | 12,952 | 12,961 | 12,937 | 1/73000 | 12,941 | 12,940 | 12,937 | 12,936   | 1/24000           |
| 8    | 2007 | 12,938 | 12,949 | 12,960 | 12,937 | 1/22000 | 12,941 | 12,939 | 12,937 | 12,937   | 1/43000           |

注:発電所基準点の標高を一定として測定しているため発電所構内の相対値

